
 Igor Farkaš ANN: Recurrent models 1

Introduction to artificial neural networks

Recurrent network models

Igor Farkaš

Department of Applied Informatics

Comenius University in Bratislava

 Igor Farkaš ANN: Recurrent models 2

Example: Mealy automaton

� Inputs: {A,B}, outputs: { , � �}

� Training set:

� no sufficient tapped-line can reliably be set, so as to learn the
behavior

� State representation of temporal context more appropriate
than �past window�

 Igor Farkaš ANN: Recurrent models 3

Partially recurrent networks (with context units)

a) Elman (1990) - feedback from hidden layer

- can recognize sequences, make predictions, produce short sequence
completion

b) Jordan (1986) - feedback from output layer

- option: decay units c
i
(t+1) = � c

i
(t) + y

i
(t) �<1

- with fixed input, can generate various output sequences

- with input sequences, can recognize sequences

c) Stornetta (1986) - decay loop on input =>

- moving average of past activations (IIR): c
i
(t+1) = � c

i
(t) + x

i
(t)

- better suited for recognizing input sequences, than generating or
reproducing them

d) Mozer (1986) � input c
i
(t+1) = � c

i
(t) + f(�

j
v

ij
x

j
(t))

- differs from c) in two features: full connectivity b/w inputs and context
units, trainable decay links (recurrent)

- requires a learning rule different from BP, similar applicability as c)

 Igor Farkaš ANN: Recurrent models 4

Learning algorithms for fully recurrent NNs

� dynamically driven recurrent NNs, global feedback

� acquire (internal) state representations

� (similarly to spatial tasks) two modes:

� epochwise training: epoch ~ sequence

� continuous training

� We mention two gradient based algorithms: BPTT and RTRL

� Heuristics:

� start with shorter sequences, then increase length

� update weights only if training error is larger than threshold

� consider regularization (e.g. weight decay)

 Igor Farkaš ANN: Recurrent models 5

Back-propagation through time

� extension of standard BP algorithm �
unfolding in time into a feedforward NN
(with identical weights)

� sequence with inputs x(1), x(2), ..., x(T)

State equation:

 s
i
(t+1) = f (�

j
w

ij
s

j
(t) + x

i
(t)),

[in our example i, j = 1,2]

T = 3

(Werbos, 1990)

 Igor Farkaš ANN: Recurrent models 6

BPTT algorithm

� applied after processing each sequence (of length T)

� during single forward pass through sequence:

� record inputs, local gradients �

� Overall error: E
total

(T) = ½ �T

t=1
 �

i�O
 e

i

2(t)

� for t = T: �
i
(t) = f'(net

i
) e

i
(t)

 for 1 < t < T: �
i
(t) = f'(net

i
) [e

i
(t) + �

l�O
w

il
 �

l
(t+1)]

� Update weights: ∆ w
ij
= - � �E

total
(T) / �w

ij
= � �T

t=2
�

i
(t) x

j
(t-1)

� impractical for longer sequences (of unknown length)

 Igor Farkaš ANN: Recurrent models 7

Real-time recurrent learning (RTRL)

� Instantaneous output error: e
i
(t) = d

i
(t) – s

i
(t); i�O (targets exist)

E(t) = ½ �
i�O

 e
i

2(t)

� Update weights: ∆w
ij
= - � �E(t) / �w

ij
= � �

k�O
e

k
(t) �s

k
(t) / �w

ij

�s
k
(t) / �w

ij
= f'(net

k
(t)) [�kr

ki
s

j
(t-1) + �

l
w

kl
�s

l
(t-1) / �w

ij
]

l� units feeding to unit k, and �kr
ki

= 1, if k = i, else 0.

- if j pertains to external input,

x

j
(t-1) is used instead

� Smaller � recommended, BP �tricks� applicable (e.g. momentum)

� Teacher forcing � replace actual output with desired whenever available
� may lead to faster training and enhance learning capability

� Very large time and memory requirements (with N neurons, each
iteration): N 3 derivatives, O(N 4) updates to maintain

(Williams & Zipser, 1989)

 Igor Farkaš ANN: Recurrent models 8

Simple recurrent network
(Elman, 1990)

hk �t	1
= f ��
j
w kj x j �t
	�l

ckl hl�t

y i�t
= f ��
k

v ik hk �t

can be trained by BP, RTRL,...

f �u
=
1

1	exp ��u

Unit's activation function:
Hidden state activation:

Output:

Implicit representation
of time

The following examples: symbolic dynamics

 Igor Farkaš ANN: Recurrent models 9

Example: Next letter prediction task

(Elman, Cog. Sci., 1990)

Task: letter-in-word prediction, 5-bit inputs
Data: 200 sentences, 4 to 9 words in a sentence
SRN: 5-20-5 units, trained by back-propagation (Rumelhart, Hinton & Williams, 1986)
- NN discovers the notion �word�

Many years ago boy and girl lived by the sea ...

 Igor Farkaš ANN: Recurrent models 10

Example: Next word prediction task

(Elman, Cog. Sci., 1990)

Categories of lexical items used

Templates for sentence generator

SRN: 31-150-31

localist encoding of words

no context reset b/w sentences

Averaged hidden-unit activation vectors

 Igor Farkaš ANN: Recurrent models 11

Properties of hidden-unit activations after training

� activations show structure (clusters)
� types/tokens distinction: types = centroids of tokens
� representations are hierarchically structured
� type vector for a novel word (zog) consistent with previous knowledge
� representation space would not grow with a growing lexicon

 Igor Farkaš ANN: Recurrent models 12

Example: Modeling recursive processing in humans

(Christiansen & Chater, 1999)

A. Counting recursion

B. Center-embedding recursion

C. Cross-dependency recursion

D. Right-branching recursion

� Qualitative performance of SRN model matches human behavior, both on
relative difficulty of B and C, and between their processing and that of D.

� This work suggests a novel explanation of people's limited recursive
performance, without assuming the existence of a mentally represented
competence grammar allowing unbounded recursion.

� They compare the performance of the network before and after training �
pointing to architectural bias, which facilitates the processing of D over B and C.

 Igor Farkaš ANN: Recurrent models 13

RNN state space organization

� y = F(h) is a squashed version of a linear transformation => it is smooth
and monotonic

� Activations h leading to the same/similar output y are forced to lie close
to each other in the RNN state space

� Heuristics for enhancing RNN generalization: cluster RNN state space
into a finite number of clusters

� Each cluster will represent an abstract information-processing state =>
knowledge extraction from RNN (e.g. learning finite state automata with
RNNs)

y

h

 Igor Farkaš ANN: Recurrent models 14

Example: Learning a finite state automaton

� State-space activations in RNN � neural memory � code the entire history
of symbols we have seen so far.
� Information latching problem for gradient learning
� To latch a piece of information for a potentially unbounded number of time
steps we need attractive sets.

Ti o (2003)ň

RNN

state

space

Grammatical:

all strings containing odd number of 2's

 Igor Farkaš ANN: Recurrent models 15

Example: string classification task

Ti o (2003)ň

Extracted FSM:

all strings containing odd number of 2's

RNN has a continuous state-space
Automaton can be extracted from
trained RNN (clusters of hidden-
unit activations correspond to
automaton states)

 Igor Farkaš ANN: Recurrent models 16

Example: temporal association task

Training sequences:

3+1 input symbols
3+1 output symbols

Suitable scenario: start with simpler sequences
Extracted automaton can generalize training data

 Igor Farkaš ANN: Recurrent models 17

Computational power of recurrent networks

� recurrent NNs can learn to simulate formal automata

� regular grammars (finite-state machine)

� context-free grammars (e.g. anbn ~ saddle-point attractive set)

� All Turing machines may be simulated by fully connected recurrent networks
built on neurons with sigmoid activation functions. (Siegelmann, 1991)

� Practically, we may encounter problems with convergence in more complex
tasks.

� vanishing gradients problem � difficulty to learn long-term dependencies by
gradient-based algorithms

� approaches: apply heuristics, extended Kalman filtering, elaborate
optimization techniques

 Igor Farkaš ANN: Recurrent models 18

Properties of hidden-unit activations before training

(Kalaš, FMFI,2004)

SRN: 31-1000-31
random initialization of weights
(small values)

Architectural bias:
Structured hidden-unit activations
exist prior to training

 Igor Farkaš ANN: Recurrent models 19

Explanation of architectural bias in RNNs

In RNNs with sigmoid activation functions and initialized with small weights
(Ti o et al. (2004)� :

1) clusters of recurrent activations that emerge prior to training correspond
to Markov prediction contexts � histories of symbols are grouped
according to the number of symbols they share in their suffix, and

2) based on activation clusters, one can extract from untrained RNNs
predictive models � variable memory length Markov models (VLMMs).

RNNs have a potential to outperform finite memory models, but to
appreciate how much information has really been induced during training,
RNN performance should always be compared with that of VLMMs
extracted before training as the �null� base models.

 Igor Farkaš ANN: Recurrent models 20

Iterated Function Systems

IFS consists of a complete metric space (X,d), where X = [0,1]N, d is

Euclidean metric, together with a set of contractive mappings w
i
: X�X

w
i
(x) = k x + (1-k) s

i
 i = 1,2,..., A

N=ceil � log2 A

(Barnsley, 1988)

Symbols s
i
�{0,1}N Contraction coef. k�(0,0.5]

Each n-symbol sequence S = s
1
s

2
...s

n
is represented by IFS as a point

w(x) = w
n
(w

n-1
(...(w

2
(w

1
(x)))...)), x�X.

Recurrent NN with small random weights also performs contractive

mappings in state space (using various k's for each symbol).

 Igor Farkaš ANN: Recurrent models 21

IFS � topographic mapping property

Let S
i

j = s
i
 s

i+1
...s

j
, then given a sequence S = s

1
s

2
... over A, the

chaotic n-block representation of S is defined as a set of points

CBR
n,k

(S) = {S
i

i+n-1(x
*
)}

i
1

where x
*
= {½}M is the center of X.

� CBR has the property that is temporal analogue of topographic

mapping: the longer is common suffix of two sequences, the

closer they are mapped in CBR.

� On the other hand, the Euclidean distance between points

representing two n-sequences that have the same prefix of length

n -1 and differ in the last symbol, is at least 1 - k.

 Igor Farkaš ANN: Recurrent models 22

Illustration of contractive mapping (IFS)

Ti o (2003)ň

Topological ordering with respect to suffixes

 Igor Farkaš ANN: Recurrent models 23

Echo state network
(Jaeger, 2001)

� only output weights are trained => fast training
� has Markovian behavior in symbolic dynamics

Hidden units:
� linear or sigmoid activation function
� create dynamic reservoir (mapping to high dimensional space),

� context weights: random sparse matrix, with spectral radius |�
max

| < 1
� input weights: random, small

can have architecture of
Elman net, but also additional
connections are possible

 Igor Farkaš ANN: Recurrent models 24

SOMs for symbolic sequences

Neurons: i = 1,2, ..., N Winner i* = arg min
j
{d

j
(t)}, or {�d

j
(t)�}

Weight update for: w
i
(input weights) c

i
(context weights, optional)

Temporal Kohonen map: d
i
(t) = a.�x(t)

-w

i
�2 + (1-a) d

i
(t-1)

Recurrent SOM: d
i
(t) = a.[x(t)

-w

i
]+ (1-a) d

i
(t-1)

Merge SOM: d
i
(t) = (1-a).�x(t)

-w

i
�2 + a.�r(t) – c

i
�2 x, r � Rd

r(t) = b.w
i*
(t-1) + (1-b) r

i*
(t-1)]

Recursive SOM: d
i
(t) = a.�x(t)

-w

i
�2 + b.�y(t-1)

- c

i
�2 y

i
=exp(-d

i
)

 c
i
, y � RN

SOMSD: context = winner position in the map

- (Markovian) map of suffixes

 Igor Farkaš ANN: Recurrent models 25

Recursive self-organizing map (RecSOM)
(Voegtlin, 2002)

E i=a�s�t
�wi�
2	b�y�t�1
�ci�

2

Quantization error on unit i:

Output of unit i:

y i=exp��E i

w
i
�t	1
=w

i
�t
	z hik [s�t
�w

i
�t
]

c
i
�t	1
=c

i
�t
	z hik [y �t�1
�c

i
� t
]

Learning rules:

0 < z << 1 (constant) learning rate h – (decreasing) neighborhood function

RecSOM can lead to more complex dynamics

compared to other unsupervised models, based

on leaky-integrator units.

(Tino, Farkas, van Mourik, 2006)

 Igor Farkaš ANN: Recurrent models 26

RecSOM: trained on stochastic 2-state automaton:
weights

RecSOM: 10x10 units, 1D inputs

Input weights Context weights

Input source: P(b|a) = 0.3, P(a|b) = 0.4

 Igor Farkaš ANN: Recurrent models 27

RecSOM: trained on stochastic 2-state automaton:
topographic map of suffixes

 Igor Farkaš ANN: Recurrent models 28

Summary

� two classes of architectures (time-lagged, partially or fully recurrent)

� time-lagged models are good for tasks with limited memory

� recurrent models with global feedback (via tapped-delay-lines) learn their
internal state representations

� existing links to the theory of nonlinear dynamical systems, signal processing
and control theory

� More complex learning algorithms: BPTT, RTRL (gradient-based)

� second-order neurons possible � higher computational power

� despite theoretical potential, difficulties to learn more complex tasks

� architectural bias

� novel models: echo-state networks and self-organizing recursive maps

